Charge moment change and lightning-driven electric fields associated with negative sprites and halos

نویسندگان

  • Jingbo Li
  • Steven Cummer
  • Gaopeng Lu
  • Lucian Zigoneanu
چکیده

[1] Sprites are structured high altitude optical emissions produced by lightning-driven electric fields. Both strong positive and negative cloud to ground flashes (CGs) are capable of initiating sprites. However, reported sprites are almost exclusively produced by +CGs. The very limited number of negative polarity sprites makes it difficult to reveal their morphologies and mechanisms. Since 2008, we have operated low light cameras at 5 locations in the United States to detect lightning-driven transient luminous events (TLEs). At Duke University, two pairs of magnetic sensors simultaneously record lightning-radiated magnetic fields. During 4 years of observations, the low light cameras collectively captured 1651 sprite events. Among them, 6 were produced by CG lightning, which was confirmed by both the National Lightning Detection Network (NLDN) and magnetic field measurements. All of these negative sprites show similar features in their morphology, lightning source current, and lightning-driven ambient electric fields. They all initiate within a few ms from their parent lightning discharges and always are accompanied by sprite halos. Compared to positive sprites, the downward streamers in negative sprites terminate at higher altitudes, about 55–60 km. The extracted source current of their parent lightning discharges is very impulsive and produces at least 450 C km charge moment change in 0.5 ms or less. Unlike most +CG strokes, essentially no continuing current follows these CGs. Thus the uniformity of negative sprite morphology appears to reflect the uniformity of the characteristics of high charge transfer negative strokes. Numerical simulation shows these impulsive source currents produce very high (>2 Ek, where Ek is the local air breakdown field) but short-lived electric fields at halo altitudes between 70 km and 90 km. At streamer termination altitudes, the inferred background electric field is 0.2–0.3 Ek, which is close to but below the critical field (0.4 Ek) for negative streamer propagation. The simulations also show that the timescale of the lightning source current has a significant impact on the high altitude electric fields and thus the sprite initiation and morphology. With the same amount of charge transfer, a more impulsive current source produces a higher electric field of shorter duration at halo and sprite altitudes. The short timescales may explain why a larger threshold of total charge moment change is required to initiate negative sprites than short-delayed positive sprites, whose parent lightning source current is usually less impulsive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordinated analysis of delayed sprites with high-speed images and remote electromagnetic fields

[1] Simultaneous measurements of high-altitude optical emissions and magnetic fields produced by sprite-associated lightning discharges enable a close examination of the link between low-altitude lightning processes and high-altitude sprite processes. We report results of the coordinated analysis of high-speed sprite video and wideband magnetic field measurements recorded simultaneously at Yucc...

متن کامل

Estimation of electric charge in sprites from optical and radio observations

[1] Measurements of very low frequency radio emissions indicate that substantial electric current flows inside some sprites. This charge motion, with presently unknown location and distribution, is related to the detailed internal microphysics of sprite development that is in turn connected to the impact sprites have on the mesosphere. Assuming that sprite streamers propagate along the directio...

متن کامل

Lightning charge moment changes for the initiation of sprites

[1] The transient ELF ( 50–5000 Hz) magnetic field radiated by lightning discharges across North America was continuously measured at Duke University during the summer of 2000. In total, 881 sprite-associated lightning discharges over 17 days were analyzed. We report in detail on 76 sprites for which we could reliably determine the lightning charge moment change from the ELF data at the time of...

متن کامل

Mechanism of ELF radiation from sprites

Charge and current systems associated with sprites constitute a part of the large scale atmospheric electric circuit, providing a context for physical understanding of recently discovered ELF radiation originating from currents flowing within the body of sprites. It is shown that the impulse of the electric current driven in the conducting body of the sprite by lightning generated transient qua...

متن کامل

Lightning morphology and impulse charge moment change of high peak current negative strokes

[1] We have analyzed very high frequency lightning mapping observations and remote magnetic field measurements to investigate connections between lightning morphology and impulse charge moment change (iCMC) of negative cloud-to-ground (CG) strokes with high estimated peak currents. Four lightning morphologies are identified for a total of 2126 strokes within optimum detection range of the North...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012